Anosov flows, surface groups and curves in projective space
نویسندگان
چکیده
منابع مشابه
INEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS
In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.
متن کاملTopology of Curves in Projective Space
We survey and expand 1 on the work of Segal, Milgram and the author on the topology of spaces of maps of positive genus curves into complex projective space (in both the holomorphic and continuous categories). Both based and unbased maps are studied and in particular we compute the fundamental groups of the spaces in question. The relevant case when n = 1 is given by a non-trivial extension whi...
متن کاملLyapunov functions and Anosov flows
We show that if the codimension one Anosov flow Φ on a compact n-manifold M satisfies the so called condition (L), then there is a continuous Lyapunov function g : R → R, where R is the universal covering space of M , such that g strictly increases along the orbits of the lift of Φ and is constant on the leaves of the lift of the strong stable foliation of the “synchronization” (i.e. suitable r...
متن کاملLipschitz Distributions and Anosov Flows
We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show that every codimension-one Anosov flow on a compact manifold of dimension > 3 such that the sum of its strong distributions is Lipschitz, admits a global cross section. The ...
متن کاملOn Contact Anosov Flows
The study of decay of correlations for hyperbolic systems goes back to the work of Sinai [36] and Ruelle [32]. While a manifold of results were obtained thru the years for maps, some positive results have been established for Anosov flows only recently. Notwithstanding the proof of ergodicity, and mixing, for geodesic flows on manifolds of negative curvature [15, 1, 35] the first quantitative r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2006
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-005-0487-3